BLOGGER TEMPLATES - TWITTER BACKGROUNDS »

Latest Event

Latest Event
Solar Eclipse of 9 March 2016

Friday, October 2, 2009

Letupan Besar

Menurut teori Letupan Besar, alam semesta muncul dari keadaan yang sangat tumpat dan panas. Sejak itu, ruang angkasa mengembang dengan masa membawa galaksi bersama.

Dalam fizik kosmologi, Letupan Besar merupakan teori saintifik yang mengatakan alam semesta muncul dari keadaan yang sangat tumpat dan panas lebih kurang 13.7 bilion tahun dahulu. Teori Letupan Besar adalah berdasarkan cerapan anjakan merah hukum Hubble tentang jarak galaksi yang apabila disertakan sekali prinsip kosmologi mendapati ruang angkasa mengembang menurut model Friedmann-Lemaître bagi kerelatifan am. Ditentuluarkan ke masa silam, pemerhatian ini menunjukkan yang alam semesta mengembang dari keadaan ketika tenaga dan jirim dalam alam semesta ini sangat panas dan tumpat. Ahli fizik tidak bersetuju sepenuhnya tentang apa yang berlaku sebelum itu, walaupun kerelatifan am meramalkan ketunggalan graviti.

Istilah Letupan Besar digunakan bagi merujuk titik apabila pengembangan yang dicerap (Hukum Hubble) bermula — kira-kira 13.7 bilion (1.37 × 1010) tahun dahulu (±2%) — dan bagi yang lebih umum iaitu digunakan untuk merujuk paradigma kosmologi terkini menerangkan asal dan pengembangan alam semesta, begitu juga komposisi jirim awal melalui nukleosintesis seperti yang diramalkan oleh teori Alpher-Bethe-Gamow.

Satu kesan daripada letupan besar adalah keadaan alam semesta kini berbeza dari keadaan pada masa dahulu atau akan datang (evolusi semula jadi alam semesta sentiasa mengambil tempat). Daripada model, George Gamow pada 1948 dapat meramalkan, sekurang-kurangnya secara kualitatif, akan kewujudan sinar latar belakang mikrogelombang kosmos (CMB). CMB ditemui pada 1960-an dan kemudian mengesahkan teori Letupan Besar mengatasi lawannya, teori keadaan tetap.


Sejarah
Rencana utama: Sejarah teori Letupan Besar

Teori Letupan Besar dikembangkan dari cerapan dan pertimbangan teori. Secara cerapan, didapati kebanyakan nebula berpusar bergerak dari Bumi,m tetapi sesiapa yang membuat pemerhatian tersebut tidak menyedari akan implikasi kosmologi mahupun yang nebula tersebut adalah galaksi luar Bima Sakti. Pada 1927, Georges Lemaitre menerbitkan persamaan Friedmann-Lemaitre-Robertson-Walker dari persamaan Albert Einstein tentang kerelatifan am dan mencadangkan, tentang asas bagi runtuhan nebula berpusar, bahawa alam semesta bermula dari "letupan" "atom awal"—yang kemudian dikenali sebagai Letupan Besar.

Pada 1929, Edwin Hubble menyediakan asas pemerhatian tentang teori Lemaître. Dia menjumpai, secara relatif kepada Bumi, yang galaksi bergerak di setiap arah pada kelajuan yang berkadar terus dengan jaraknya dari Bumi. Fakta ini dikenali sebagai Hukum Hubble. Di beri prinsip kosmologi yang mana alam semesta, apabila dilihat dalam skala jarak yang agak besar, tidak mempunyai arah tertentu atau tempat tertentu, Hukum Hubble mencadangkan yang alam semesta sedang berkembang lalu menentang scenario alam semesta yang tetap dan selanjar yang dikembangkan oleh Einstein.

Idea ini membenarkan dua percanggahan kemungkinan. Satu adalah teori Letupan Besar Lemaitre, disokong dan dimajukan oleh George Gamow. Kemungkinan lain adalah model keadaan tetap Fred Hoyle yang mana jirim baru akan tercipta apabila galaksi menjauhi antara satu sama lain. Dalam model ini, alam semesta agak sama di mana-mana titik pada satu masa. Sebenarnya, Hoyle mencipta nama bagi teori Lemaitre, merujuk secara ironiknya sebagai "idea Letupan Besar ini" ketika siaran rancangan pada 28 Mac 1949 oleh BBC Third Programme. Hoyle mengulang istilah itu dalam siaran yang lain pada awal 1950-an, sebagai sebahagian siri dari lima syarahan yang bertajuk Sifat Benda. Teks syarahannya telah diterbitkan dalam majalah British The Listener seminggu selepas setiap kali penyiaran, kali pertama istilah"Letupan Besar" muncul dalam cetakan.

Buat beberapa tahun, sokongan bagi teori ini telah bebelah bagi. Walau bagaimanapun, bukti cerapan mula menyokong idea yang menyatakan bahawa alam semesta berubah dari keadaan tumpat dan panas. Sejak penemuan sinaran latar belakang mikrogelombang kosmos pada 1965, ia telah dianggap sebagai teori terbaik tentang asal-usul dan perubahan kosmos. Hampir semua kerja teori dalam kosmologi kini melibatkan pengembangan dan pernukaran asas teori Letupan Besar. Banyak kerja tentang kosmologi kini meliputi pemahaman bagaimana galaksi membentuk dalam konteks Letupan Besar, pemahaman tentang apa yang terjadi ketika Letupan Besar, dan menyepadukan pemerhatian dengan teori asas.

Kelebihan besar dalam kosmologi Letupan Besar pada 1990-an dan abad ke-21 sebagai kesan daripada kemajuan teknologi teleskop apabila disekalikan dengan data satelit yang banyak dari COBE, Teleskop Hubble Space dan WMAP. Data sebegitu telah membenarkan ahli kosmologi mengira banyak perimeter Letupan Besar hingga ke satu tahap kepersisan dan membawa kepada penemuan yang tidak dijangka iaitu pengembangan alam semesta sedangan memecut.

Gambaran keseluruhan
Berdasarkan pengukuran pengembangan semesta dengan menggunakan Supernova Type Ia, pengukuran akan kekasaran latar belakang mikrogelombang kosmos, dan pengukuran fungsi sama bagi galaksi, usia alam semesta dikira selama 13.7 ± 0.2 bilion tahun. Persetujuan 3 pengukuran tidak bersandar ini dikira sebagai bukti kukuh bagi Model ΛCDM yang menerangkan secara terperinci sifat isi kandungan alam semesta.

Alam semesta yang awal diisi secara lama keadaan dan seragam dengan ketumpatan bertenaga tinggi bersama suhu dan tekanan tinggi. Ia mengembang dan menyejuk, melalui perubahan fasa seperti pemeluwapan wap atau penyejukan air apabila ia menyejuk tetapi berkaitan dengan zarah asas.

Lebih kurang 10-35 saat selepas zaman Planck, peralihan fasa menyebabkan alam semesta mengalami pertumbuhan eksponen ketika pengembungan kosmos. Selepas pengembungan terhenti, komponen-komponen jirim alam semesta berada dalam bentuk plasma kuark-gluon (juga termasuk zarah lain—dan mungkin dihasilkan secara eksperimen seperti cecair kuark-gluon) yang mana juzuk zarah semuanya bergerak secara relatif. Apabila alam semesta berterusan membesar, suhu pula menurun. Pada suhu tertentu, melalui peralihan yang masih tidak diketahui yang dipanggil bariogenesis, kuark dan gluon akan bergabung menjadi barion seperti proton dan neutron, malah menghasilkan ketaksimetrian seperti antara jirim dan antijirim.

Suhu rendah masih boleh menyebabkan fasa peralihan pecahan simetri berlaku yang meletakkan daya dan zarah asas kepada keadaan seperti sekarang. Kemudian, sebahagian proton dan neutron membentuk nucleus-nukleus deuterium dan helium dalam proses yang dipanggil Nukleosintesis letupan besar. Apabila alam semesta semakin sejuk, jirim berandur-ansur berhenti bergerak secara relatif dan jisim rehat tenaga ketumpatannya menjadi secara graviti yang menguasai sinaran. Selepas 300,000 tahun, elektron dan nukleus bergabung membentuk atom (kebanyakannya hidrogen); maka sinaran terpancar dari jirim dan bersambungan merentasi angkasa yang tidak berpenghalang. Sinaran peninggalan inilah latar belakang gelombang mikro kosmik.

Lama-kelamaan, kawasan yang lebih tumpat yang jirimnya disebarkan secara seragam tertarik secara graviti berhampiran jirim lalu bertambah tumpat dan membentuk awan gas, bintang, galaksi, dan lain-lain struktur astronomi yang boleh dilihat hari ini. Perincian proses ini bergantung kepada jumlah dan jenis jirim dalam alam semesta. Tiga jenis yang mungkin dikenali sebagai jirim gelap sejuk, jirim gelap panas, dan jirim barionan]]. Pengukuran terbaik (dari WMAP) menunjukkan yang bentuk utaman jirim dalam alam semesta adalah jirim gelap sejuk. Dua yang lain mengambil 20% daripada jirim alam semesta.

Alam semesta kini dipenuhi sejenis bentuk tenaga yang misteri yang dikenali sebagai tenaga gelap. Lebih kurang 70% daripada keseluruhan ketumpatan tenaga alam semesta masa kini dalam bentuk tersebut. Komponen sebatian alam semesta ini didedahkan oleh sifatnya yang menyebabkan pengembangan alam semesta menyimpang dari hubungan jarak-halaju linear dengan menyebabkan ruang-masa mengembang dengan lebih cepat dari yang dijangka pada suatu jarak yang besar. Tenaga gelap yang berada dalam pembentukan yang teringkas mengambil bentuk istilah pemalar kosmologi dalam persamaan medan Einstein tentang kerelatifan am, tetapi kandungannya tidak diketahui dan lebih umumnya, perincian persamaan keadaannya dan hubungannya dengan model piawai bagi zarah fizik masih disiasat secara cerapan dan teori.

Semua cerapan ini akan dirangkumkan ke dalam model ΛCDM kosmologi, iaitu model matematik bagi Letupan Besar dengan enam parameter tidak bersandar. Misteri muncul ketika ia hampir kepada permulaan, apabila tenaga zarah lebih tinggi dari apa yang boleh dikaji melalui eksperimen. Tiada bantuan model fizik bagi 10-33 saat yang pertama alam ini iaitu sebelum peralihan fasa yang dipanggil teori penyatuan agung (Grand Unification Theory, GUT). Pada mulanya, teori Einstein tentang graviti meramalkan kewujudan ketunggalan graviti iaitu ketika ketumpatannya tidak terhingga. Untuk menguraikan paradoks ini, teori kuantum graviti diperlukan. Memahami tempoh tersebut dalam sejarah alam semesta adalah satu masalah besar yang masih belum dapat diselesaikan.

0 comments: